Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 132(5): 979-988, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37742279

RESUMO

BACKGROUND AND AIMS: Drought events have devasting impacts on grape berry production. The aim of this study was to investigate berry growth in the context of leaf stomatal closure under progressive drought stress. METHODS: Potted grapevine plants (varieties 'Syrah' and 'Cabernet Sauvignon') were evaluated at pre-verasion (30-45 d after anthesis, DAA) and post-veraison (90-107 DAA). Berry diameter, berry absolute growth rate (AGR), leaf stomatal conductance (Gs) at midday, plant water potential at predawn and midday (ΨPD and ΨMD, respectively), and soil relative water content were measured repeatedly. The ΨPD-threshold of 90 % loss in stomatal conductance (Gs10, i.e. complete stomatal closure) was determined. Data were related to plant dehydration phases I, II and III with corresponding boundaries Θ1 and Θ2, using the water potential curve method. KEY RESULTS: At pre-veraison, berry AGR declined together with leaf Gs in response to soil drying in both varieties. Berry AGR transitioned from positive to negative (shrinkage) values when leaf Gs approached zero. The Gs10-threshold was -0.81 MPa in 'Syrah' and -0.74 MPa in 'Cabernet Sauvignon' and was linked to boundary Θ1. At post-veraison, berry AGR was negligible and negative AGR values were not intensified by increasing drought stress in either variety. CONCLUSION: Leaf complete stomatal closure under progressive drought stress coincides with cessation of berry growth followed by shrinkage at pre-veraison (growth stage 1).


Assuntos
Vitis , Vitis/fisiologia , Frutas , Secas , Antivirais , Folhas de Planta , Água , Solo
2.
BMC Genomics ; 17: 416, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245662

RESUMO

BACKGROUND: In wine grape production, management practices have been adopted to optimize grape and wine quality attributes by producing, or screening for, berries of smaller size. Fruit size and composition are influenced by numerous factors that include both internal (e.g. berry hormone metabolism) and external (e.g. environment and cultural practices) factors. Combined physiological, biochemical, and transcriptome analyses were performed to improve our current understanding of metabolic and transcriptional pathways related to berry ripening and composition in berries of different sizes. RESULTS: The comparison of berry physiology between small and large berries throughout development (from 31 to 121 days after anthesis, DAA) revealed significant differences in firmness, the rate of softening, and sugar accumulation at specific developmental stages. Small berries had significantly higher skin to berry weight ratio, lower number of seeds per berry, and higher anthocyanin concentration compared to large berries. RNA-sequencing analyses of berry skins at 47, 74, 103, and 121 DAA revealed a total of 3482 differentially expressed genes between small and large berries. Abscisic acid, auxin, and ethylene hormone pathway genes were differentially modulated between berry sizes. Fatty acid degradation and stilbenoid pathway genes were upregulated at 47 DAA while cell wall degrading and modification genes were downregulated at 74 DAA in small compared to large berries. In the late ripening stage, concerted upregulation of the general phenylpropanoid and stilbenoid pathway genes and downregulation of flavonoid pathway genes were observed in skins of small compared to large berries. Cis-regulatory element analysis of differentially expressed hormone, fruit texture, flavor, and aroma genes revealed an enrichment of specific regulatory motifs related to bZIP, bHLH, AP2/ERF, NAC, MYB, and MADS-box transcription factors. CONCLUSIONS: The study demonstrates that physiological and compositional differences between berries of different sizes parallel transcriptome changes that involve fruit texture, flavor, and aroma pathways. These results suggest that, in addition to direct effects brought about by differences in size, key aspects involved in the regulation of ripening likely contribute to different quality profiles between small and large berries.


Assuntos
Metabolismo Energético/genética , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Característica Quantitativa Herdável , Sequências Reguladoras de Ácido Nucleico , Transcriptoma , Vitis/fisiologia , Perfilação da Expressão Gênica , Estudos de Associação Genética , Redes e Vias Metabólicas , Metabolômica/métodos , Motivos de Nucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...